Exercise 6

Find the four zeros of the polynomial $z^{4}+4$, one of them being

$$
z_{0}=\sqrt{2} e^{i \pi / 4}=1+i
$$

Then use those zeros to factor $z^{2}+4$ into quadratic factors with real coefficients.

$$
\text { Ans. }\left(z^{2}+2 z+2\right)\left(z^{2}-2 z+2\right) .
$$

[TYPO: Replace 2 with 4 in the exponent.]

Solution

The aim here is to solve $z^{4}+4=0$, or $z^{4}=-4$. For a nonzero complex number $w=r e^{i(\Theta+2 \pi k)}$, its fourth roots are

$$
w^{1 / 4}=\left[r e^{i(\Theta+2 \pi k)}\right]^{1 / 4}=r^{1 / 4} \exp \left(i \frac{\Theta+2 \pi k}{4}\right), \quad k=0,1,2,3 .
$$

The magnitude and principal argument of -4 are respectively $r=4$ and $\Theta=\pi$, so

$$
z_{k}=(-4)^{1 / 4}=4^{1 / 4} \exp \left(i \frac{\pi+2 \pi k}{4}\right), \quad k=0,1,2,3 .
$$

The first root $(k=0)$ is

$$
z_{0}=4^{1 / 4} e^{i \pi / 4}=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)=\sqrt{2}\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)=1+i,
$$

the second root $(k=1)$ is

$$
z_{1}=4^{1 / 4} e^{i 3 \pi / 4}=\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)=\sqrt{2}\left(-\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)=-1+i,
$$

the third root $(k=2)$ is

$$
z_{2}=4^{1 / 4} e^{i 5 \pi / 4}=\sqrt{2}\left(\cos \frac{5 \pi}{4}+i \sin \frac{5 \pi}{4}\right)=\sqrt{2}\left(-\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}\right)=-1-i
$$

and the fourth root $(k=3)$ is

$$
z_{3}=4^{1 / 4} e^{i 7 \pi / 4}=\sqrt{2}\left(\cos \frac{7 \pi}{4}+i \sin \frac{7 \pi}{4}\right)=\sqrt{2}\left(\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}\right)=1-i
$$

Consequently, the left side of $z^{4}+4=0$ can be factored like so.

$$
[z-(1+i)][z-(-1+i)][z-(-1-i)][z-(1-i)]
$$

Multiply the first and fourth terms to obtain a quadratic factor with real coefficients. Multiply the second and third terms to get the second quadratic factor with real coefficients.

$$
\left(z^{2}+2 z+2\right)\left(z^{2}-2 z+2\right)
$$

